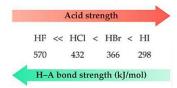

Unit 10 – ACID BASE – GLUE INS

Equilibrium

N38 - Salts


	Turns into a	Hydrolyzes?
Strong Acid	Weaker conjugate base	No
Weak Acid	Stronger conjugate base	Yes
Strong Base	Weaker conjugate acid	No
Weak Base	Stronger conjugate acid	Yes

Equilibrium

	Turns into a	Hydrolyzes?	lon makes sol'n
Strong Acid	Weaker conjugate base	No	Neutral
Weak Acid	Stronger conjugate base	Yes	Basic
Strong Base	Weaker conjugate acid	No	Neutral
Weak Base	Stronger conjugate acid	Yes	Acidic

Ka _(ion) > Kb _(ion)	Acidic
Ka _(ion) < Kb _(ion)	Basic
Kagen = Khgen	Neutral

Strength of Oxyacids (and other similar)

Strength of Binary Acids

Increa	asing Acidity	,
		0
H-0-CI H-0-CI-	O H-O-CI-O	H-0-01-0
11 0 01 111	i i	
hypochlorous acid chlorous acid	chloric acid	perchloric acid

Compare Ka and Kb to determine which "wins"

Basic

Acidic +

Neutral

Acidic + Neutral Basic + Neutral

High electronegativity of the side group pulls electron density AWAY from the bond involving Hydrogen. Bond is therefore weakened so it breaks more easily, therefore more acidic.

N39 - Henderson-Hasselbalch

Weak Acid	Formula of the acid	Example of a salt of the weak acid
Hydrofluoric	HF	KF – Potassium fluoride
Formic	нсоон	KHCOO – Potassium formate
Benzoic	C ₆ H ₅ COOH	NaC ₆ H ₅ COO – Sodium benzoate
Acetic	CH₃COOH	NaH ₃ COO – Sodium acetate
Carbonic	H ₂ CO ₃	NaHCO ₃ - Sodium bicarbonate
Propanoic	HC ₃ H ₅ O ₂	NaC ₃ H ₅ O ₂ - Sodium propanoate
Hydrocyanic	HCN	KCN - potassium cyanide

Weak Base	Formula of the base	Example of a salt of the weak acid
Ammonia	NH ₃	NH ₄ CI - ammonium chloride
Methylamine	CH ₃ NH ₂	CH ₃ NH ₃ CI – methylammonium chloride
Ethylamine	C ₂ H ₅ NH ₂	C ₂ H ₅ NH ₃ NO ₃ - ethylammonium nitrate
Aniline	C ₆ H ₅ NH ₂	C ₆ H ₅ NH ₃ Cl – aniline hydrochloride
Pyridine	C ₅ H ₅ N	C ₅ H ₅ NHCl – pyridine hydrochloride

One way of doing these calculations

Rearrange your Law of Mass Action:

$$Ka = \frac{[H^+][A^-]}{[HA]} \rightarrow [H^+] = Ka \frac{[HA]}{[A^-]} \rightarrow = Ka \frac{[Acid]}{[conj. Base]}$$

$$Kb = \frac{[BH^+][OH^-]}{[B]} \rightarrow [OH^-] = Kb \frac{[B]}{[BH^+]} \rightarrow Kb \frac{[Base]}{[conj.Acid]}$$

Henderson-Hasselbalch Equation

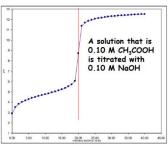
$$pH = pK_a + log\left(\frac{A^-}{HA}\right) = pK_a + log\left(\frac{[Base]}{[Acid]}\right)$$

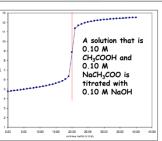
$$pOH = pK_b + log\left(\frac{BH^+}{B}\right) = pK_b + log\left(\frac{[Acid]}{[Base]}\right)$$

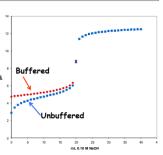
pKa = -log(Ka)Just like $pH = -log[H^+]$ pKb = -log(Kb)

The acids or bases may be conjugates from the salt!

Other ways to think about He-Ha

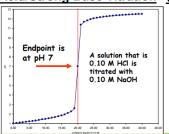

Acid with a buffer:

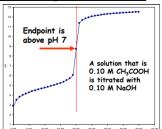

$$pH = pK_a + log\left(\frac{[salt]}{[Acid]}\right) = pK_a + log\left(\frac{[conj.Base]}{[Acid]}\right)$$


Base with a buffer:

$$pOH = pK_b + log\left(\frac{[salt]}{[Base]}\right) = pKb + log\left(\frac{[conj.Acid]}{[Base]}\right)$$

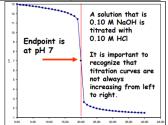
Glue-ins Continued on next page!





Suggestions.

N41 – Titration


Strong Acid/Strong Base Titration Weak Acid/Strong Base Titration

Strong Acid/Weak Base Titration **Strong Acid/Strong Base Titration**

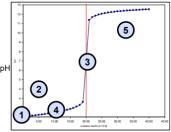
BRACEYOURSER

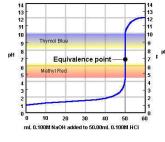
CALCULATIONS ARE COMING

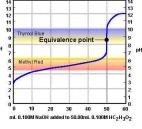
Calculations to Plot a Titration Curve

ICE table then pH

2. Early on during titration


Stoich then He-Ha


3. Equivalence Point


- mol acid = mol base No more buffer! Reverse rxn
- Calc new K value ICE then pH
- 4. 1/2 Way Point
 - ½ moles @ eq.pt
 - pH = pKa

5. Towards end of titration

- Extra titrant left over
- Stoich then simple pH

Indicator	pH Range in which	Color Change
	Color Change Occurs	as pH Increases
Crystal violet	0.0 - 1.6	yellow to blue
Thymol blue	1.2 - 2.8	red to yellow
Orange IV	1.4 - 2.8	red to yellow
Methyl orange	3.2 - 4.4	red to yellow
Bromcresol green	3.8 - 5.4	yellow to blue
Methyl red	4.8 - 6.2	red to yellow
Chlorophenol red	5.2 - 6.8	yellow to red
Bromthymol blue	6.0 - 7.6	yellow to blue
Phenol red	6.6 - 8.0	yellow to red
Neutral red	6.8 - 8.0	red to amber
Thymol blue	8.0 - 9.6	yellow to blue
Phenolphthalein	8.2 - 10.0	colourless to pink
Thymolphthalein	9.4 - 10.6	colourless to blue
Alizarin yellow	10.1 - 12.0	yellow to blue
Indigo carmine	11.4 - 13.0	blue to yellow

N39 - Henderson-Hasselbalch

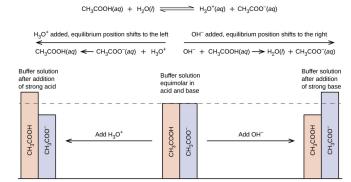
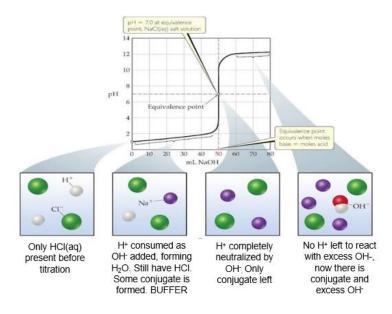


Figure 14.6.2: This diagram shows the buffer action of these reactions.

N40 - Ksp


[14] When solid BaF₂ is added to H₂O the following equilibrium is established.

$$BaF_2(s) \implies Ba^{2+}(aq) + 2 F(aq)$$
 $K_{sp} = 1.5 \times 10^{-6} \text{ at } 25 \text{ °C}$

- a. Calculate the molar solubility of barium fluoride at 25 °C.
- Explain how adding each of the following substances affects the solubility of BaF2 in water.
 - i. 0.10 M Ba(NO₃)₂
 - ii. 0.10 M HNO3
- c. In an experiment to determine the K_{sp} of PbF₂ a student starts with 0.10 M Pb(NO₃)₂ and 0.10 M KF and uses the method of serial dilutions to find the lowest [Pb²⁺] and [F] that form a precipitate when mixed. If the student uses the concentration of the ions in the combined solution to determine K_{sp} , will the value of K_{sp} calculated be too large, too small or just right?

$$K_{\rm sp}$$
 for PbF₂ = 4.0 × 10⁻⁸

- i. In a solution of 0.010 M barium nitrate and 0.010 M lead(II) nitrate, which will precipitate first, BaF2 or PbF2, as NaF(s) is added? Assume volume changes are negligible. Explain (support your answer with calculations).
 - ii. When the more soluble fluoride begins to precipitate, what is the concentration of the cation for the less soluble fluoride that remains in solution?

